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1. Introduction

When a horizontal layer of fluid is cooled and so-

lidified from the top, a cellular form of natural convec-

tion may occur inside the liquid, similar to that observed

during classical Rayleigh–Benard convection. As a result

of the interaction between the cellular convection and

directional solidification, the phase-change interface

tends to get wavy. The above situation can be mathe-

matically represented by considering two horizontal

parallel plates at z ¼ 0 and z ¼ h. The lower plate at
z ¼ h is fixed at temperature T ¼ T1 and the upper plate
at z ¼ 0 is kept at a temperature T ¼ T0. Due to occur-
rence of solidification on account of cooling from the

top, there is a solid–liquid interface at z ¼ gð06 g6 hÞ,
which is assumed to be at a quasi-steady state. The

physical situation is shown schematically in Fig. 1. As a

result of interface perturbation on account of convection

occurring below, the interface is likely to assume an

irregular shape. It can be noted here that when the so-

lidifying medium is a binary alloy that solidifies non-

isothermally, the natural convection in the liquid is

double-diffusive in nature (as a consequence of concen-

tration and temperature gradients prevailing in the so-

lidifying domain). Instabilities in thermo-solutal

convection in such cases have attracted considerable

attention in the literature [1,2]. However, the effects of

nominal alloy composition and solid layer thickness on

associated double-diffusive instabilities are yet to be

addressed in the literature, to the best of our knowledge.
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The aim of the present study is to investigate the

effects of solid layer thickness and nominal composition

on the double-diffusive instabilities, as a binary alloy of

any specified initial composition is directionally solidi-

fied from the top. However, it can be noted here that in

typical alloy solidification problems, there is also a

susceptibility of the advancing solid–liquid interface to

morphological instabilities in which the initially planar

phase boundary becomes deformed, leading to a cellular

pattern of microsegregation and ultimately a dendritic

growth structure. The segregation, in turn, can generate

gradients of concentration, which may themselves cause

convective motions, thereby changing the growth con-

ditions at the interface. However, in the regimes of

practical interest, the coupling between the morpholog-

ical and convective instability mechanisms may be rather

weak [3] due to the widely differing spatial scales in-

volved. In this paper, we specifically aim to investigate

the effects of bulk-liquid double-diffusive convection on

convective instabilities during the solidification process,

as a binary alloy is cooled and solidified from the top. In

order to facilitate an analytical treatment, the mushy

zone (a diffused region constituting of solid dendrites

and interdendritic liquid) thickness is assumed to be

negligible in comparison to the solid layer thickness. The

above assumption decouples the mushy zone flow from

the bulk flow, but incorporates the effects of a continu-

ously deforming solidification front under a quasi-steady

situation. Another simplifying assumption is made in

that the property variation within each phase is ne-

glected. The double-diffusive convective instability the-

ory is coupled with interface perturbations that enables

us to obtain critical Rayleigh numbers of flow transition

during thermo-solutal convection in the presence of a

deformable solidification interface. It is important to

mention that in the present study, only direct modes of
ed.
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Fig. 1. A schematic diagram of the model system under in-

vestigation for double diffusive convection in the liquid: (a)

unperturbed state and (b) perturbed state.
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instabilities are considered, since the other significant

mode of instability, characterised by overstable oscilla-

tions, is discussed in details elsewhere [4]. However, such

overstable oscillations are the first to occur in a double-

diffusive system only in a specific situation when the

salinity field is statically stable [4].
2. Analysis and results

Mathematical modeling is performed for the physical

situation represented in Fig. 1. The governing equation

for the solid region of interest is the heat conduction

equation. In this case, we neglect species diffusion in the

solid, since typical solid-state mass diffusivities are much

lower than the corresponding thermal diffusivities. Also,

species mass diffusion coefficient in liquid is about three

orders of magnitude higher than that in the solid. En-

ergy conservation equation for the solid can be stated as

oT �
S

ot�
¼ ar2T �

S ð1Þ

where aS represents thermal diffusivity of solid phase,
and t is the variable time. However, for analysis of
transport phenomena in the liquid region, the mass,

momentum, energy, as well as species conservation

equations have to be invoked as

r �~uu ¼ 0 ð2Þ

ou
ot

þ~uu � ru ¼ � 1

qL

op
ox

þ tr2u ð3aÞ

ov
ot

þ~uu � rv ¼ � 1

qL

op
oy

þ tr2v ð3bÞ

ow
ot

þ~uu � rw ¼ � 1

qL

op
oz

þ tr2wþ gfbTðT � TrefÞ

þ bSðCl � CrefÞg ð3cÞ

oTL
ot

þ~uu � rTL ¼ aLr2TL ð4Þ

oCL
ot

þ~uu � rCL ¼ Dlr2CL ð5Þ

In the above equations, u, v and w represent com-
ponents of the velocity vector ~uu along x, y, z, respec-
tively. The symbol T represents temperature, C
represents solute concentration, p is the pressure, bS is
the volumetric coefficient of solutal buoyancy, bT rep-
resents volumetric coefficient of thermal buoyancy, aL
represents thermal diffusivity of the liquid phase, and

represents kinematic viscosity. In the mathematical

analysis presented in this paper, the subscripts �L’ and �S’
refer to liquid and solid phases, respectively.

For convenience in the analytical treatment, we may

suitably non-dimensionalise the above governing equa-

tions coupled with appropriate boundary conditions.

The non-dimensional quantities are denoted by a su-

perscript �*’. The reference length scale is chosen as hL
(height of the liquid layer), time scale is chosen as h2L=aL,
velocity scale is chosen as bww and pressure scale is chosen
as tlqlbww l=hL, where bww is given by
bww ¼ fgbTðT0 � TrefÞhLaL=cLg

0:5 ð6Þ

Further, the solid and liquid state temperatures are non-

dimensionalised as

T �
L ¼ ðTL � TsolÞ=ðT0 � TsolÞ ð7Þ

T �
S ¼ ðTS � TsolÞ=ðT0 � TsolÞ ð8Þ

where Tsol is the solidus temperature. In the above
equations, the subscripts �0’ and �sol’ refer to the initial
condition and the solidus, respectively.

Similarly, the liquid state composition is non-

dimensionalised as

C�
L ¼ ðCL � CsolÞ=ðC0 � CsolÞ ð9Þ

With the parameters defined as above, the non-dimen-

sionalised governing equations become
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Energy conservation equation for solid phase

oT �
S

ot�
¼ ar2T �

S ð10Þ

where a ¼ aS=aL.
Continuity equation for the liquid phase

r �~uu� ¼ 0 ð11Þ

Momentum conservation equations in the liquid

phase

Pr�1
ou�

ot�

�
þ R0:5T ~uu� � ru�

�
¼ � op�

ox�
þ r2u� ð12aÞ

Pr�1
ov�

ot�

�
þ R0:5T ~uu� � rv�

�
¼ � op�

oy�
þ r2v� ð12bÞ

Pr�1
ow�

ot�

�
þ R0:5T ~uu� � rw�

�

¼ � op�

oz�
þ r2w� þ R0:5T T �

L þ NR0:5T C�
L ð12cÞ

where Pr ¼ tL=aL and N ¼ fbSðC0 � CsolÞg=fbTðT0�
TsolÞg ¼ buoyancy ratio.
Energy conservation equation in the liquid phase

oT �
L

ot�
þ R0:5T ~uu� � rT �

L ¼ r2T �
L ð13Þ

where RT ¼ gbTðT � TsolÞh3l =tLaL:
Species conservation equation in liquid phase

oC�
L

ot�
þ R0:5T ~uu� � rC�

L ¼ DL
aL

r2C�
L ð14Þ

The non-dimensional boundary conditions can be

stated as

u� ¼ v� ¼ w� ¼ 0; T �
L ¼ 1; C�

L ¼ 1 at z� ¼ 0 ð15Þ

u� ¼ v� ¼ w� ¼ 0;
T �
s ¼ ðT1 � TsolÞ=ðT0 � TsolÞ; at z� ¼ 1þ r ð16Þ

where r ¼ hS=hL:
Energy balance at the interface

qSt
og�

ot�
¼ fkrT �

S �rT �
Lg � bnn at z� ¼ g� ð17Þ

where q ¼ qS=qL, k ¼ kS=kL and St ¼ fqLLaLg=fkLðT0�
TsolÞg, L being the latent heat of fusion.
Solute balance at the interface

½1� kp�½C�
LðC0 � CsolÞ þ Csol�

og�

ot�

¼ �ðC0 � CsolÞrC�
L � bnn at z� ¼ g� ð18Þ

where Csol is the solid composition corresponding to the
phase-change temperature, and kp is the partition-coef-
ficient.

T �
L ¼ T �

S ¼ 0 at z� ¼ g� ð19Þ
Kinetic condition for interface deformation

ð1� qÞ og�

ot�

f1þ ðog�=ox�Þ2 þ ðog�=oy�Þ2g0:5
¼~uu� � n̂n at z� ¼ g�

ð20Þ

No-slip conditions at the interface

~uu� � t̂t1 ¼ 0 at z� ¼ g� ð21aÞ

~uu� � t̂t2 ¼ 0 at z� ¼ g� ð21bÞ

where t̂t1 and t̂t2 are unit vectors in two tangential direc-
tions with respect to the interface, mutually orthogonal

to each other.

For the subsequent perturbation analysis, the su-

perscript �*’ is dropped from the dimensionless quanti-
ties for convenience, but the dimensionless quantities are

used only.

First, the base state solutions are obtained, denoted

by the subscript �B’. At the basic state, all velocity
components are zero and the pressure distribution

within the fluid is hydrostatic. The basic state tempera-

ture profile within the solid is first solved to yield

TS;B ¼ k�1ð1� zÞ ð22Þ

Similarly, the liquid phase temperature profile at the

basic state is obtained as

TL;B ¼ 1� z ð23Þ

Proceeding in a similar way, we obtain

CL;B ¼ 1� z ð24Þ

In the subsequent formulation, instabilities associated

with quasi-steady double diffusive convection in the

liquid phase are considered. In a physical sense, the aim

is to consider a basic state in which a slight rise in the

temperature of the upper region causes a slight melting

of the solid, leading to a perturbation at the interface.

Regarding the perturbed equations, a theory first de-

scribed by Malkus and Voronis [5] can be followed as:

/ ¼ /B þ e/1 þ e2/2 ð25Þ

where / is a generic form for either of ~uu, p, TL, TS, CL,
RT, and e is a small number.
In Eq. (25), all the variables are assumed to be of the

form f̂f ðzÞ/ðx; yÞ, where f̂f and / are two separable ge-
neric functions of z and (x, y), respectively. One can
expand the non-dimensional governing equations ac-

cording to the above assumptions, and subsequently

impose the boundary conditions. In essence, we aim to

perform a normal-mode analysis. Regarding the inter-

face boundary conditions, it is important to note that

the associated variables are to be expanded in a Taylor’s

series about z ¼ 1 (i.e., basic location of the interface).
Accordingly, we obtain



Fig. 2. Critical parameters for double diffusive convection in

bulk liquid: (a) variation with critical Rayleigh number with

respect to r; (b) variation with critical wave number with respect
to r and (c) variation of critical liquid layer height (for onset of
instability) with r, for the cases in which solutal buoyancy is
absent (case 1), opposes thermal buoyancy (case 2), and aids

thermal buoyancy (case 3).
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bTTS1 ¼ k�1bgg1 sinhfarð1� nÞg
sinhðarÞ ð26Þ

where a is the wave number of perturbation and n ¼
ðz� 1Þ=r.
The liquid-state temperature-field, however, cannot

be solved without invoking the momentum and species

conservation equations, since they are coupled together.

The appropriate interface boundary conditions for

temperature distribution in the liquid can be obtained by

using the Stefan boundary condition (Eq. (17)) and

temperature distribution inside the solid (given by Eq.

(26)) to yield

bTTL1 ¼ bgg1 at z ¼ 1 ð27Þ

DbTTL1 ¼ �abgg1 coshðarÞ at z ¼ 1 ð28Þ

The linear stability of the problem in the liquid under

neutral stability conditions is posed by obtaining a sys-

tem of self-adjoint equations described below. The fol-

lowing equations are basically derived by equating OðeÞ
terms in the governing perturbation equations. Ac-

cordingly, one gets

r2TL1 þ R0:5T0w1 ¼ 0 ð29Þ

� op1
oy

þr2v1 ¼ 0 ð30Þ

� op1
ox

þr2u1 ¼ 0 ð31Þ

� op1
oz

þr2w1 þ R0:5T0TL1 þ R0:5T0NCL1 ¼ 0 ð32Þ

DL
aL

r2CL1 þ R0:5T0w1 ¼ 0 ð33Þ

fðD2 � a2Þ3 � R0;eqa2gbww1 ¼ 0 ð34Þ

where

R0;eq ¼ RT0 þ N
aL
DL

RT0 ¼ RT0 þ RS0 ð35Þ

In the above equation, RS0 is the solutal Rayleigh
number.

The appropriate boundary conditions for Eq. (35) are

bww1 ¼ Dbww1 ¼ ðD2 � a2Þbww1 ¼ 0 at z ¼ 0 ð36aÞ

bww1¼Dbww1¼ 0;
DfðD2�a2Þbww1gþacothðraÞfðD2�a2Þ2bww1g¼ 0 at z¼ 1

ð36bÞ

The solvability conditions for the above system gives

rise to a critical Rayleigh number (Rcr) as a function of r,
where R is the algebraic sum of thermal and solutal

Rayleigh numbers, and r is defined as the ratio of height
of the solid layer to the liquid layer. The critical Ray-
leigh number is plotted as a function of r and the critical
wave number (acr) is also plotted as a function of r in
Fig. 2(a) and (b), respectively. It can be seen from the

figures that the critical Rayleigh number for onset of

instability decreases asymptotically as the relative height



Fig. 3. Variation of first-order correction of Ra with �r’.
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of the solid layer increases. In other words, double dif-

fusive instabilities are associated with lower values of

minimum liquid-layer heights, in comparison to the case

where no phase change can occur. This can be attributed

to the fact that the interface perturbation acts as an

additional source of disturbance in the present case,

which can trigger off instabilities more easily. However,

it is important to note that the critical Rayleigh number

is actually a combination of the thermal and solutal

Rayleigh numbers. Thus, the corresponding critical

height not only depends on the relative depth of the solid

layer, but also depends on the relative signs of bT and bS,
which essentially decide whether thermal buoyancy ef-

fects are aided by solutal buoyancy effects, or vice-versa.

Hence, for a particular value of r, the critical height of
the liquid layer would be dependent on the initial con-

centration of the mixture. Such effects are illustrated for

an NH4Cl–H2O system in Fig. 2(c), where the nominal

compositions are taken as the eutectic composition (case

1), greater than eutectic concentration by 5 wt.% (case

2), and lesser than the eutectic concentration by 5 wt.%

(case 3), respectively. It can be noted that case 2 leads to

a situation where solutal buoyancy opposes the thermal

buoyancy, whereas in case 3 they aid each other. Case 1

does not involve any effects of solutal buoyancy at all. It

can be seen from Fig. 2(c) that the critical height of

liquid layer for case 3 is the lowest, and the same is the

highest for case 2. This can be attributed to the fact that

since the thermal and solutal buoyancy effects aid each

other in case 3, convection does not die out easily and

continues to prevail for a much longer time, as com-

pared to the other cases. During this time, the solidifi-

cation front progresses considerably, leading to a

reduced critical height of the liquid layer. On the other

hand, in case 2, the solutal buoyancy opposes the ther-

mal buoyancy, and hence the convection is expected to

die down much earlier, resulting in a much increased

critical depth of the liquid layer than the third case. Case

1 results in an isothermal solidification very much alike a

single-component system, with no effects of solutal

buoyancy. Accordingly, the critical height of the liquid

layer falls in between the corresponding values for case 2

and case 3.
Appendix A. Analysis of planform functions and first-

order variations at criticality

For an illustration, we consider the solidification of

an eutectic binary system, as it is cooled from the top.

After separation of the dependent variables (such as

velocity, temperature), we obtain a governing equation

for the planform function (/) as

o2/
ox2

þ o2/
oy2

¼ �a2/ ðA:1Þ
under the normalization condition

�//2 ¼ 1 ðA:2Þ

where the �bar’ over / denotes the horizontal average
over one period in x and y; i.e., over one cell. In Eq.
(A.1), a is the wave number. Stability considerations [6]
lead to the appearance of either roll-type or hexagonal

cells. The occurrence of the type of cells is determined by

the following special form of /:

/ðx; yÞ ¼ Y cos
ky
2
cos

ffiffiffi
3

p
kx
2

þ Z cos ky ðA:3Þ

In the above equation, rolls have Y ¼ 0, Z 6¼ 0 and
hexagons have Y ¼ �2Z. Under these conditions, the
normalization constraint (A.2) requires

Y 2

4
þ Z2

2
¼ 1 ðA:4Þ

so that Z ¼ �
ffiffiffi
2

p
for the roll patterns and Z ¼ �

ffiffi
2
3

q
for

the hexagonal pattern.

In order to obtain a deeper insight into the effects of

the resultant eigenfunctions on the first-order correction

of Ra (say, Rað1Þ), the ratio Rað1Þ=Racr can be plotted as
a function of rð¼ hS=hLÞ, as depicted in Fig. 3, with a
normalization of max bww1ðzÞ ¼ 0:94a2cðrÞ, where ac is the
critical wave number.
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